Genomic DNA extraction experiment using Exgene™ Plant SV mini kit from tiny amount of sea algae samples which are difficult to extract nucleic acid

Experimental Conditions

Materials Required

- Exgene™ Plant SV mini (100 preps: 117-101 / 250 preps: 117-152)
- Tissuelyser II (85300, supplier Q) or another bead beating device
- Liquid nitrogen (LN₂)
- Methanol (CH₃OH, CAS No.: 67-56-1, ≥99.8%)
- 1.5 ml or 2.0 ml microcentrifuge tube
- Vortex mixer
- Centrifuge (Max. speed 14,000 rpm)
- Pipette & sterile pipette tips
- Suitable protector (e.g., lab coat, disposable gloves, goggles, etc.)

Sample Information

Sample type:

Kelp (Saccharina japonaca)

Green laver (Ulva prolifera)

- Sampling: after collecting fresh algae samples, put them in a bag and seal it
- How to store: store in -70 °C deep freezer
- Sample preparation
 - 1. Rapidly freeze the frozen samples in LN₂.
 - 2. Prepare the two each of 5 mg sea algae samples.
 - 3. Homogenize the samples using Tissuelyser II (85300, supplier Q)
- Elution volume: 50 μl

Protocol

- 1. Prepare two each of three types of the sea algae samples measured 5 mg which are rapidly frozen. Homogenize the sea algae samples for 10 seconds at 30 Hz using TissueLyser II.
- 2. After homogenizing, first samples are treated with 1 ml methanol for removing salt, and second samples are not treated with 1 ml methanol.
- The methanol treatment method for removing salt and substances in the sea algae samples.
 - ① Vortex after add the 1 ml of methanol in samples.
 - ② Remove the supernatant solution after centrifugation for 1 min at ≥13,000 rpm.
 - ③ Vortex the samples after add the nuclease-free water.
 - ④ Remove the supernatant solution after centrifugation for 1 min at ≥13,000 rpm.
 - 3. The next step for gDNA extraction is according to the protocol of Exgene™ Plant SV mini.
- Exgene™ Plant SV mini Protocol
 - * For more details and methods, please refer to the handbook of Exgene™ Plant
 - ① Add 400 µl Buffer PL and 4 µl of RNase A solution (100 mg/ml). vortex
 - ② Incubate for 10-15 min at 65 °C. Mix 2-3 times during incubation by vortexing. Occasional mixing will accelerate the lysis.

- 3 Add 140 µl of Buffer PD to the lysate. Vortex to mix, and incubate for 5
 - (Optional:) Centrifuge for 5 min at full speed (>10,000 x g or 14,000 rpm) if the lysate becomes very viscous or sticky after addition of Buffer PD.
- Apply the lysate to EzSep™ Filter (blue) and centrifuge for 2 min at full
- ⑤ Transfer the pass-through to a new 1.5 ml microcentrifuge tube by pipetting or decanting carefully not to disturb the cell debris pellet. CAUTION: In step 4, small cell debris pellet can be formed in 2 ml collection tube after centrifugation. Please be careful not to disturb this pellet in next step.
- 6 Add 1.5 volumes of Buffer BD to the lysate and mix immediately by pipetting or inverting. Adjust of volume of Buffer BD on the basis of correct volume of lysate.
- ② Apply 700 μl of the mixture to Column Type G (green) with collection tube. Centrifuge for 30 sec and discard the pass-through. Reuse the collection tube.
- ® Apply the all of remaining lysate to Column Type G. Centrifuge for 30 sec and discard the pass-through. Reuse the collection tube.
- Apply 700 μl Buffer CW to Column Type G. Centrifuge for 30 sec and discard the pass-through. Reinsert Column Type G to the collection tube.
- carefully Column Type G to a new 1.5 ml microcentrifuge tube. If carryover of Buffer CW occurs, centrifuge again for 1 min before proceeding to
- ⁽¹⁾ Apply 50 μl of Buffer AE directly onto the center of column membrane. Incubate for 5 min at room temperature, and centrifuge for 1 min.

Result

#	Sample Type	Conc. (ng/μl)		A _{260/280}		A260/230		Yield (μg)	
					-	+	-		
1	- Kelp	8	9.2	1.61	1.99	0.97	1.01	0.4	0.46
2		7.7	10.5	1.93	1.77	1.17	1.04	0.39	0.53
3	- Sea lettuce	0.4	0.7	3.51	2.04	-0.05	-0.08	0.02	0.04
4		0.4	0.6	5.01	9.46	-0.05	-0.06	0.02	0.03
5	Green laver	1.5	2.2	1.55	2.78	-0.28	-0.39	0.08	0.11
6		1.3	2.5	9.34	2.19	-0.18	-0.42	0.07	0.13

Table 1. The results of sea algae gDNA yield and purity measurement about condition of treatment in 1 ml methanol (+) and non-treatment in 1 ml methanol (-). +: methanol 1 ml treatment

- methanol 1 ml non-treatment
- Absorbance measurement instrument: NanoDrop™ 2000/2000c (ND-2000, supplier T)

Figure 1. The result of electrophoresis about condition of treatment in 1 ml methanol (+) and non-treatment in 1 ml methanol (-). It is possible to see the DNA band of kelp samples M: GENESTA™ 1 kb DNA ladder with 5X loading dye (GA-100, GeneAll®, 1 μl loading) ※ Electrophoresis conditions: 1.0% agarose gel (150 V, 25 min, 10 μl loading)

Conclusion

- As a result of extracting genomic DNA from tiny amounts of sea algae samples difficult to extract nucleic acid using Exgene™ Plant SV mini kit, it is possible to confirm that a little amounts of DNA are extracted.
- Large amounts of salt contained in the sea algae samples conduct as an inhibitor interrupted to extract nucleic acid.
- For comparison of removing salt, we proceeded to treat 1 ml methanol in homogenized sea algae samples or not. But, it is not possible to confirm as a meaningful result of research.